Chem. Ber. 113, 1130-1137 (1980)

Kronenether als Wirtssubstanzen für organische Gastmoleküle

Fritz Vögtle*, Walter M. Müller und Edwin Weber

Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Str. 1, D-5300 Bonn 1

Eingegangen am 22. Juni 1979

Der Dibenzopyridino-Kronenether 2 bildet neutrale, stöchiometrische, kristallisierte Komplexe mit anderen Kronenethern, wie [12]Krone-4, und mit CH-aciden organischen Verbindungen, wie Acetonitril, Nitromethan, Dimethylsulfoxid sowie Formamid, Dimethylformamid, Dimethylacetamid u. a. (Tab.). Von den strukturell ähnlichen Kronenethern 1, 3, 5 - 7, 9 - 18 bilden nur 3, 6, 9, 12 und 16 in geringerem Umfang Neutralmolekülkomplexe. Ein 1:2-Formamid-Komplex der [18]Krone-6 (8) wird gleichfalls isoliert.

Complexes Between Neutral Molecules, VII¹⁾

Crown Ethers as Host Compounds for Organic Guest Molecules

Neutral, stoichiometric crystalline complexes of dibenzopyridino crown ether 2 with other crown ethers such as [12]crown-4 and with CH-acidic molecules such as acetonitrile, nitromethane, dimethyl sulfoxide as well as with formamide, dimethylformamide, dimethylacetamide and others are reported (cf. table). Of the structurally similar crown ethers 1, 3, 5-7, 9-18 only 3, 6, 9, 12 and 16 form, to a less extent, similar neutral molecule complexes. A 1:2 formamide complex of [18]crown-6 (8) has also been isolated.

Eine systematische Suche nach neuen Wirtsmolekülen bzw. -gittern für Neutralmoleküle ist nach wie vor schwierig²⁾. Am häufigsten beschrieben scheinen Komplexe³⁾ vom Charge-Transfer-Typ⁴⁾ und der Cyclodextrine⁵⁾ zu sein. Nicht-Charge-Transfer-artige Neutralmolekülkomplexe sind bisher auf Einzelfälle⁶⁾ bzw. Zufallstreffer wie Cyclotriveratrylen⁷⁾, Tri-*o*-thymotid⁸⁾, Perhydrotriphenylen⁹⁾, Dianin¹⁰⁾, Choleinsäuren u. a.¹¹⁾ beschränkt.

Backer hatte bereits 1935 gefunden, daß hexasubstituierte Benzolverbindungen Lösungsmittel wie Toluol im Verhältnis 1:2 einschließen¹²). MacNicol et al. haben die Reihe auf die "Hexahost"-Verbindungen¹³) und auf verschiedene Halogenalkane, Methylaromaten, Dioxan, Aceton und Cycloalkane als Gastsubstanzen ausgedehnt¹⁴) sowie einige dieser Wirt/Gast-Strukturen kristallstruktur-analytisch aufgeklärt¹⁵). In der Regel dürften hier mehr oder weniger geordnete Einschlüsse von Gastmolekülen im Wirtsgitter vorliegen.

Wie wir vor kurzem fanden, sind zur Kationkomplexierung entworfene donoratomhaltige Krakenmoleküle¹⁶ auch zur Adduktbildung¹⁷) mit einer Reihe von Neutralmolekülen geeignet, von denen Einschlüsse bisher nicht beschrieben sind¹⁸). Neuartig ist, daß kristallisierte Addukte mit Kronenethern als *Gast*verbindungen leicht isoliert werden können. Diese Beobachtung und das hartnäckige Festhalten von Lösungsmitteln durch die Dibenzopyridino-Krone (2)¹⁹ veranlaßten uns zur gründlichen Untersuchung.

© Verlag Chemie, GmbH, D-6940 Weinheim, 1980 0009 - 2940/80/0303 - 1130 \$ 02.50/0

1. Synthese der Wirtsverbindungen

Die neuen Pyridinokronenether 1 und 3 wurden durch Verdünnungsprinzip-Cyclisierung^{19a)} aus 2,6-Bis(chlormethyl)pyridin²⁰⁾ und 2,2'-(Ethylendioxy)diphenol (**4b**) bzw. 2,2'-(3,6-Dioxaoctamethylendioxy)diphenol (**4d**)²¹⁾ dargestellt.

4b selbst wurde durch katalytische Hydrierung des aus 2-(Benzyloxy)phenol²²⁾ mit 1,2-Dibromethan erhaltenen Dibenzylethers **4a** synthetisiert. Der zwei Pyridinkerne enthaltende Kronenether **5**²³⁾ wurde inzwischen auch von anderer Seite beschrieben²⁴⁾. Das Pyridin-*N*-oxid **6** wurde aus 2,6-Bis(brommethyl)pyridin-*N*-oxid²⁵⁾ und **4c** synthetisiert^{19a)}; **7** wurde durch *m*-Chlorperbenzoesäure-Oxidation von **3** erhalten.

2. Komplexbildung mit Neutralmolekülen

Mit einer Vielzahl organischer Neutralverbindungen, darunter auch mit Kronenethern, konnten wir nun kristallisierte, stöchiometrische Komplexe¹⁷⁾ von 2 und – in geringerem Umfang – von strukturell ähnlichen Kronenethern (3, 6, 9, 12, 16) isolieren (Tab.). Sowohl durch die Elementaranalyse als auch in den Massen- und ¹H-NMR-Spektren sind beide Komponenten jeweils-nachweisbar.

Bemerkenswert ist zunächst die exakte 1:1-Stöchiometrie des 2-Acetonitril-Komplexes (Tab.), der schon bei einmaligem Umkristallisieren von 2 aus Acetonitril entsteht. [18]Krone-6 (8) bildet zwar gleichfalls ein kristallisiertes Acetonitril-Addukt²⁶, jedoch konnte dieses trotz mehrerer Versuche bisher nicht stöchiometrisch erhalten werden. Die Stöchiometrie wurde mit 1:1.6^{26b} angegeben; wiederholte eigene Versuche führten zu ähnlichen Resultaten²⁷. Eine Kristallstrukturanalyse des 2-Acetonitril-Komplexes erscheint daher weniger schwierig als die des [18]Krone-6-Adduktes.

Auch die leichte Komplexbildung von 2 mit Nitromethan und Dimethylsulfoxid ist bemerkenswert und für [18]Krone-6 nur im Falle von Nitromethan, aber unstöchiometrisch, beschrieben^{26b}).

Da die letztgenannten Gastmoleküle CH-acide sind, nehmen wir für diese Neutralmolekülkomplexe Wasserstoffbrückenbindungen zwischen den CH_3 - bzw. CH_2 -Gruppen und den N- und O-Donoratomen von **2** als stabilisierenden und zur Stereochemie des Komplexes beitragenden Faktor an^{26b,28)}. Im Vergleich mit [18]Krone-6 (8) basischere Pyridino-Kronenether wie **2** könnten daher zur Komplexbildung mit CH-aciden Verbindungen allgemein besser geeignet sein.

	Ana
iischen Gastmolekülen	Summenformel
2, 16 mit orgar	Ausb.
onenether 2, 3, 6, 8, 9, 12	Schmp.
ülkomplexe der Kr	Stöchiometrie
Tab.: Neutralmolek	Komplex

Wirt Nr.	Gast	Komplex Nr.	Stöchiometrie Wirt : Gast	Schmp. [°C]	Ausb. [‰]	Summenformel (Molmasse)	Analyse C H N
7	[12]Krone-4	19	2:1	170 – 174	48	C ₅₄ H ₆₂ N ₂ O ₁₄ (963.0)	Ber. 67.34 6.49 2.91 Gef. 67.52 6.34 3.02
	Acetonitril	20	1:1	131 ^{a)} , 139–141	38	C ₂₅ H ₂₆ N ₂ O ₅ (434.5)	Ber. 69.11 6.03 6.45 Gef. 69.01 5.94 6.42
	Nitromethan	21	1:1	130 ^{a)} , 139–141	35	C ₂₄ H ₂₆ N ₂ O ₇ (454.5)	Ber. 63.42 5.77 6.17 Gef. 63.50 5.70 5.88
	Formamid	22	1:1	130 ^{a)} , 139–141	43	C ₂₄ H ₂₆ N ₂ O ₆ (438.5)	Ber. 65.74 5.98 6.39 Gef. 65.63 5.96 6.27
	Dimethylformamid	23	2:1	117 – 125 ^{a)} , 139 – 141	36	C ₄₉ H ₅₃ N ₃ O ₁₁ (859.9)	Ber. 68.43 6.21 4.89 Gef. 68.27 6.23 4.73
	Dimethylacetamid	2	2:1	65 ^{a)} , 128–133	32	C ₅₀ H ₅₅ N ₃ O ₁₁ (873.9)	Ber. 68.71 6.34 4.81 Gef. 69.00 6.49 4.83
	Dimethylsulfoxid	25	2:1	125 ^{a)} , 139–141	34	C ₄₈ H ₅₂ N ₂ O ₁₁ S (864.9)	Ber. 66.65 6.06 3.24 Gef. 66.34 6.14 3.24
	Acetylendicarbon- säure-dimethylester	56	2:1	85 ^{a)} , 141 – 151	63	C ₅₂ H ₅₂ N ₂ O ₁₄ (928.9)	Ber. 67.23 5.64 3.02 Gef. 66.91 5.74 3.13
	Diacetyl	27	2:1	125 ^{a)} , ab 133	31	C ₅₀ H ₅₂ N ₂ O ₁₂ (872.9)	Ber. 68.79 6.01 3.21 Gef. 68.51 6.03 3.12
	Ethylenglycol	78	3:2	125 ^{a)} , ab 133	46	C ₇₃ H ₈₁ N ₃ O ₁₉ (1304.4)	Ber. 67.21 6.26 3.22 Gef. 66.95 6.32 3.13
	Mesitylen	29	3:1	70ª), ab 173	39	C ₇₈ H ₈₁ N ₃ O ₁₅ (1300.5)	Ber. 72.04 6.28 3.23 Gef. 72.10 6.38 3.21
e	Acetonitril	90	3:2	79 – 80 ^b), 99 – 100	36	C ₇₉ H ₈₇ N ₅ O ₁₈ (1394.5)	Ber. 68.04 6.29 5.02 Gef. 67.76 6.10 5.18

Wirt Nr.	Gast	Komplex Nr.	Stöchiometrie Wirt: Gast	Schmp. [°C]	Ausb. [%]	Summenformel (Molmasse)	Analyse C H N
6	Acetonitril	31	3:2	140 ^{a)} , 145 – 159	31	C ₇₃ H ₇₅ N ₅ O ₁₈ (1310.4)	Ber. 66.91 5.77 5.35 Gef. 66.93 5.75 5.26
	Nitromethan	32	1:1	140 – 152	63	C ₂₄ H ₂₆ N ₂ O ₈ (470.5)	Ber. 61.27 5.57 5.96 Gef. 60.96 5.55 5.75
	Formamid	33	3:2	140 ^{a)} , 152 – 159	42	$C_{71}H_{75}N_5O_{20}$ (1318.3)	Ber. 64.68 5.73 5.31 Gef. 64.65 5.89 5.38
	Dimethylsulfoxid	¥	2:1	174 ^{a)} , 210–211	39	C ₄₈ H ₅₂ N ₂ O ₁₃ S (896.9)	Ber. 64.27 5.84 3.12 Gef. 63.98 5.94 2.95
œ	Formamid	35	1:2	92 - 97	37	C ₁₄ H ₃₀ N ₂ O ₈ (354.4)	Ber. 47.44 8.53 7.91 Gef. 47.24 8.42 7.92
6	Nitromethan	36	1:1	85 – 90 ^a), 179 ^{b)} 205 – 209	46	C ₂₄ H ₂₂ N ₂ O ₉ (482.4)	Ber. 59.75 4.60 5.81 Gef. 59.54 4.56 5.66
12	Nitromethan	37	3:2	156 – 160	45	$C_{74}H_{78}N_2O_{19}$ (1299.4)	Ber. 68.40 6.05 2.16 Gef. 68.17 6.07 2.46
16	Acetonitril	38	3:2	85c), 112–114a) 120–122	32	C ₇₆ H ₇₈ N ₂ O ₁₅ (1259.4)	Ber. 72.48 6.24 2.23 Gef. 72.55 6.22 2.33
	Nitromethan	39	3:2	100¢), 111 – 113¢) 120 – 122	39	C ₇₄ H ₇₈ N ₂ O ₁₉ (1299.4)	Ber. 68.40 6.05 2.16 Gef. 68.41 6.06 2.02
^{a)} Zersetz wicklung	ung unter teilweisem S aus der Kristallphase.	schmelzen bzv	w. Gasentwicklung	. Mitunter treten mehrere Sch	ımelzbereicl	he auf. – ^{b)} Kristall	umwandlung ^{c)} Gasent-

Tab. (Fortsetzung)

Mit der Annahme von H-Brücken kann möglicherweise auch die leichte Komplexbildung von 2 mit polaren Substanzen wie Formamid, Dimethylformamid, Dimethylacetamid, Acetylendicarbonsäure-dimethylester, Diacetyl, Ethylenglycol und des mehrere $O - CH_2$ -Gruppen enthaltenden Kronenethers [12]Krone-4 erklärt werden^{28,29)}, jedoch kaum die Adduktbildung mit Mesitylen und ähnlichen Molekülen. Hier könnten die Gastmoleküle in Zwischenräumen des 2-Kristallgitters untergebracht sein.

Die interessante Frage, ob in den Komplexen mit Acetonitril, Nitromethan und Dimethylsulfoxid die Wasserstoffatome der Methylgruppe gleichmäßig zu allen Donorzentren des [18]Krone-6-analogen Gerüstes (zweigegabelte) H-Brückenbindungen³⁰⁾ ausbilden, und ob daher das Acetonitril annähernd senkrecht zum Kronenetherhohlraum angeordnet ist²⁸⁾, kann erst durch Röntgenstrukturanalyse zweifelsfrei geklärt werden. Dies gilt in besonderem Maße für die 2:1-Komplexe von 2 mit den zwei Methylgruppen enthaltenden Gastmolekülen Dimethylsulfoxid, Acetylendicarbonsäuredimethylester, Diacetyl sowie den 3:1-Komplex mit Mesitylen (vgl. 25 – 27, 29 in Tab.).

Mit weiteren Neutralmolekülen lassen sich von **2** kristallisierte, jedoch nichtstöchiometrische Komplexe bzw. solche komplizierterer Stöchiometrie erhalten, z. B. mit folgenden Verbindungen: Chloroform, *N*-Methylformamid, Acetessigester, Acetylaceton, Acetonylaceton, Malonsäurediethylester, Äpfelsäure-diethylester, Cyanessigsäure-methylester, Chloracetonitril, α -Picolin, 2,6-Lutidin, Collidin, *N,N*-Dimethylethylendiamin, Dimethylaminoethanol, Dioxan, Sulfolan, Triethylenglycolmonomethylether, PEG-200 und PEG-400³¹).

Die überraschende Komplexierung der Dibenzopyridinokrone 2 mit verschiedenen neutralen Molekülen wirft die Frage auf, wie weit sich deren Struktur variieren läßt, ohne daß die Neutralmolekül-Komplexierung merklich gestört wird: Während die Verkleinerung des Hohlraums um eine Ethylenglycolether-Einheit (vgl. 1) zum Verlust der Komplexbildung unter analogen Bedingungen führt, läßt sich mit der ringweiteren Pyridinokrone 3 wenigstens ein Acetonitril-Komplex isolieren, der allerdings eine vom 2-Komplex (1:1) abweichende Stöchiometrie (3:2) aufweist (Tab.). Analoges gilt für das Pyridin-N-oxid (6).

Entsprechend der Deutung von 2 als *Rezeptor für Neutralmoleküle mit CH-acider* H_3C -*Gruppe* bildet auch der vom Hohlraum und den Donoratomen sehr ähnliche Pyridino-Kronenetherester 9³²⁾ mit Nitromethan einen 1:1-Komplex (Tab.), während

Komplexe zwischen Neutralmolekülen, VII

dies mit dem donoratomgleichen, aber pyridinlosen Amin 10^{19a} bisher nicht gelungen ist. Auch von dem Dithiapyridino-Kronenether $11^{19a,33}$ sowie von 13-15, 17 und 18^{19a} konnten wir keine entsprechenden Komplexe erhalten. 12 und 16^{19a} bilden abweichend von 2 lediglich 3:2-Komplexe mit Nitromethan, 16 einen Acetonitril-Komplex gleicher Stöchiometrie.

Experimenteller Teil

2,2'-(Ethylendioxy)diphenoldibenzylether (4a): Zu einer gerührten, unter Rückfluß erhitzten Lösung von 20.0 g (100 mmol) 2-(Benzyloxy)phenol²²⁾ und 5.84 g (104 mmol) Kaliumhydroxid (zuvor in wenig Wasser gelöst) in 150 ml Ethanol wird eine Lösung von 9.38 g (50 mmol) 1,2-Dibromethan in 20 ml Ethanol getropft und das Gemisch noch 6 h erhitzt. Nach Abkühlen wird i.Vak. eingeengt. Aus dem Rückstand kristallisieren 18.5 g (87%) Produkt in langen Nadeln mit Schmp. 86 – 88 °C (Ethanol).

IR (KBr): 1595, 1510, 1485 (Aromat), 1215 (Aryl-C – O), 1125 cm⁻¹ (Alkyl-C – O). – ¹H-NMR (CDCl₃): $\delta = 4.45$ (s, 4H, OCH₂ – CH₂O), 5.12 (s, 4 Benzyl-H), 6.78 – 7.62 (2m, 18 Aryl-H).

C28H26O4 (426.5) Ber. C 78.85 H 6.14 Gef. C 78.90 H 6.19 Molmasse 426 (MS)

2,2'-(Ethylendioxy)diphenol (4b): Eine Suspension von 17.0 g (40 mmol) 4a und 0.5 g Pd (10% auf Aktivkohle) in 250 ml Essigester wird in einer Schüttelapparatur unter 3 at Wasserstoff 4 h bei 30°C hydriert. Anschließend wird filtriert, i. Vak. eingeengt und der farbl. kristalline Rückstand aus Chloroform/Petrolether (40-60°C) umkristallisiert: 9.15 g (93%) farbl. schillernde Plättchen mit Schmp. 115 – 116°C.

IR (KBr): 1598, 1506, 1458 (Aromat), 1225 (Aryl-C – O), 1110 cm⁻¹ (Alkyl-C – O). – 1 H-NMR (CDCl₃): $\delta = 4.28$ (s, 4H, OCH₂), 6.61 – 6.89 (m, 8 Aryl-H), 8.11 (s, 2 OH).

C14H14O4 (246.3) Ber. C 68.28 H 5.73 Gef. C 68.21 H 5.74 Molmasse 246 (MS)

Allgemeine Darstellungsmethode für die Liganden 1 und 3: 3.52 g (20 mmol) 2,6-Bis(chlormethyl)pyridin²⁰⁾ in 250 ml n-Butanol, 4.93 g (20 mmol) 2,2' -(Ethylendioxy)diphenol (**4b**) in 250 ml Ethanol und 1.60 g (40 mmol) Natriumhydroxid in 250 ml Ethanol [bzw. 6.68 g (20 mmol) 2,2' -(3,6-Dioxaoctamethylendioxy)diphenol (**4d**)²¹⁾ und 2.24 g (40 mmol) Kaliumhydroxid in 250 ml Ethanol] werden unter Verdünnungsbedingungen^{19a)} in 1 l siedendem n-Butanol umgesetzt. Anschließend wird i. Vak. eingedampft, der Rückstand in heißem Chloroform aufgenommen, filtriert und der über MgSO₄ getrocknete Extrakt nach dem Einengen chromatographiert (Al₂O₃, basisch, Woelm, Akt.-St. I – II, CHCl₃).

1,4,11,20-Tetraoxa[4]orthobenzeno[2](2,6)pyridino[2]orthobenzenophan (1): 3.91 g (56%) farbl. Kristalle mit Schmp. 123 – 124 °C (Chloroform/Petrolether 40 – 60 °C). – IR (KBr): 1590, 1490 (Aromat), 1250 (Aryl-C – O), 1120 cm⁻¹ (Alkyl-C – O). – ¹H-NMR (CDCl₃): δ = 4.18 (s, 4H, OCH₂ – CH₂O), 5.12 (s, 4 Benzyl-H), 6.70–7.58 (m, 11H, Aryl-H, Pyridin).

C₂₁H₁₉NO₄ (349.4) Ber. C 72.19 H 5.48 N 4.01 Gef. C 71.96 H 5.47 N 4.03 Molmasse 349 (MS)

1,4,7,10,17,26-Hexaoxa[10]orthobenzeno[2](2,6)pyridino[2]orthobenzenophan (3): 5.74 g (65%) farbl. Kristalle mit Schmp. 99–100°C (n-Heptan). – IR (KBr): 1585, 1490 (Aromat), 1250 (Aryl-C-O), 1110 cm⁻¹ (Alkyl-C-O). – ¹H-NMR (CDCl₃): δ = 3.52 (s, 4H, OCH₂-CH₂O), 3.58–4.20 (2m, 8H, OCH₂-CH₂O), 5.18 (s, 4 Benzyl-H), 6.75–7.90 (m, 11 H, Aryl-H, Pyridin).

 $C_{25}H_{27}NO_6 \ \ (437.5) \quad \ Ber. \ \ C \ 68.63 \ \ H \ 6.22 \ \ N \ 3.20 \\ Gef. \ \ C \ 68.34 \ \ H \ 6.18 \ \ N \ 3.20 \ \ Molmasse \ 437 \ (MS)$

1,4,7,10,17,26-Hexaoxa[10]orthobenzeno[2](2,6)pyridino[2]orthobenzenophan-N-oxid (7): Eine gerührte Lösung von 1.10 g (2.50 mmol) 3 in 2 ml Chloroform wird unter Eiskühlung mit einer Lösung von 550 mg (3.20 mmol) *m*-Chlorperbenzoesäure in 15 ml Chloroform versetzt und 2 h unter Eiskühlung gehalten. Man läßt auf Raumtemp. kommen und 24 h stehen. Anschließend wird 3 mal mit je 25 ml gesätt. NaHCO₃-Lösung sowie 3mal mit je 25 ml Wasser extrahiert und die organische Phase über MgSO₄ getrocknet. Nach Einengen i. Vak. und Umkristallisation aus Chloroform/Petrolether (40-60°C) erhält man 1.05 g (93%) farbl. Nadeln mit Schmp. 168-170°C.

IR (KBr): 1605, 1500 (Aromat), 1260 (NO), 1135, 1120 cm⁻¹ (Alkyl-C-O). - ¹H-NMR (CDCl₃): $\delta = 3.34$ (s, 4H, OCH₂-CH₂O), 3.48-4.20 (2m, 8H, OCH₂-CH₂O), 5.30 (s, 4 Benzyl-H), 6.78-7.88 (m, 11 H, Aryl-H, Pyridin).

C₂₅H₂₇NO₇ (453.5) Ber. C 66.21 H 6.00 N 3.09 Gef. C 66.18 H 6.01 N 3.03 Molmasse 453 (MS)

Allgemeine Methode zur Darstellung der Komplexe mit Neutralmolekülen: 0.5 - 1.0 mmol des betreffenden Liganden (2, 3, 6, 8, 9, 12, 16) werden mit ca. 0.5 - 5 ml der Gastverbindung kurzzeitig zum Sieden erhitzt, heiß filtriert und nochmals aus der gleichen Gastverbindung umkristallisiert. Nach Absaugen wird bei 40°C i. Vak.³⁴⁾ über Silicagel getrocknet. Ausbeuten und physikalische Daten siehe Tab.

Literatur

- ¹⁾ VI. Mitteil.: G. Oepen und F. Vögtle, Liebigs Ann. Chem. 1979, 2114.
- ²⁾ Gemeinsames Merkmal einiger bekannter Wirtsstrukturen scheint eine trigonale Molekülsymmetrie zu sein, die jedoch nur in wenigen Fällen nach Einschluß des Gastmoleküls erhalten bleibt; vgl. Lit.¹⁵.
- ³⁾ Als "Komplexe" bezeichnen wir allgemein Verbindungen höherer Ordnung, die durch Zusammenschluß zweier oder mehrerer Moleküle entstehen, im Gegensatz zu Verbindungen 1. Ordnung, an deren Entstehung einzelne Atome beteiligt sind; vgl. Lit.¹⁷).
- ⁴⁾ Übersichten: R. Foster (Herausg.), Molecular Complexes, Bd. 1 und 2, P. Elek (Scientific Books), Ltd. London 1973; R. Foster (Herausg.), Molecular Association, Vol. 1, Academic Press, London 1975.
- ⁵⁾ Übersichten: W. Saenger in: Environmental Effects on Molecular Structure and Properties, S. 265ff., B. Pullman (Herausg.), D. Reidel Publ. Co., Dordrecht, Holland 1976; M. L. Bender und M. Komiyama, Cyclodextrine Chemistry, Springer Verlag, Berlin-Heidelberg 1978.
- ⁶⁾ Z. B. Thioharnstoff-, Harnstoff-Komplexe von Kronenethern: C. J. Pedersen, J. Org. Chem. 36, 1690 (1971); W. Raβhofer und F. Vögtle, Tetrahedron Lett. 1978, 309; Vgl. auch F. Vögtle, G. Oepen und W. Raβhofer, Liebigs Ann. Chem. 1979, 1577; U. Heimann und F. Vögtle, Chem. Ber. 112, 3034 (1979).
- ⁷⁾ V. M. Bhatnagar, J. Struct. Chem. 6, 760 (1965); R. C. Cookson, B. Halton und I. D. R. Stevens, J. Chem. Soc. B 1968, 767, und dort zitierte Literatur.
- ⁸⁾ D. Lawton und H. M. Powell, J. Chem. Soc. 1958, 2339; A. P. Downing, W. D. Ollis und I. O. Sutherland, J. Chem. Soc. B 1970, 24; S. Brunie und G. Tsoucario, Cryst. Struct. Commun. 3, 481 (1974); D. J. Williams und D. Lawton, Tetrahedron Lett. 1975, 111.
- ⁹⁾ M. Farina, G. Allegra und G. Natta, J. Am. Chem. Soc. 86, 516 (1964); G. Allegra, M. Farina, A. Immirzi, A. Colombo, U. Rossi, R. Broggi und G. Natta, J. Chem. Soc. B 1967, 1020, 1028.
- ¹⁰⁾ A. Collet und J. Jacques, J. Chem. Soc., Chem. Commun. **1976**, 708; J. H. Gall, A. D. U. Hardy, J. J. McKendrick und D. D. MacNicol, J. Chem. Soc., Perkin Trans. 2 **1979**, 376.
- ¹¹⁾ Übersichten: L. Mandelcorn (Herausg.), Non-Stoichiometric Compounds, Academic Press, New York 1964; G. Gawalek, Einschlußverbindungen, Additionsverbindungen, Clathrate, VEB Deutscher Verlag der Wissenschaften, Berlin 1969; W. Saenger, Umschau 74, 635 (1974); J. E. D. Davis, J. Chem. Educ. 54, 536 (1977); D. D. MacNicol, J. J. McKendrick und D. R. Wilson, Chem. Soc. Rev. 7, 65 (1978); F. Hein und B. Heyn, Chemie der Komplexverbindungen, Hirzel Verlag, Leipzig 1978.
- ¹²⁾ H. J. Backer, Rec. Trav. Chim. Pays-Bas 54, 833 (1935).
- ¹³⁾ D. D. MacNicol und D. R. Wilson, J. Chem. Soc., Chem. Commun. 1976, 495.

- 14) D. D. MacNicol und D. R. Wilson, Chem. Ind. (London) 1977, 84.
- ¹⁵⁾ D. D. MacNicol, A. D. U. Hardy und D. R. Wilson, Nature (London) 266, 611 (1977).
- ¹⁶⁾ F. Vögtle und E. Weber, Angew. Chem. 86, 896 (1974); Angew. Chem., Int. Ed. Engl. 13, 814 (1974).
- ¹⁷⁾ Über die Abgrenzung der Begriffe "Komplex", "Addukt", "Additionsverbindung", "Molekülverbindung", "Molekülkomplex", "Assoziat" herrscht in der Literatur keine Klarheit.
- ¹⁸⁾ E. Weber, W. M. Müller und F. Vögtle, Tetrahedron Lett. 1979, 2335.
- ¹⁹⁾ ^{19a)} Synthese: E. Weber und F. Vögtle, Chem. Ber. 109, 1803 (1976). ^{19b)} Kommerziell erhältlich bei Fa. E. Merck AG (Darmstadt), Art.-Nr. 11867, Dibenzopyridino-[18]krone-6.
- ²⁰⁾ W. Baker, K. M. Buggle, J. F. W. McOmie und D. A. M. Watkins, J. Chem. Soc. 1958, 3594.
- ²¹⁾ G. Oepen, J. P. Dix und F. Vögtle, Liebigs Ann. Chem. 1978, 1592.
- ²²⁾ J. H. Jones und G. T. Young, J. Chem. Soc. C 1968, 436.
- ²³⁾ F. Vögtle und J. Rechmann, unveröffentlicht.
- ²⁴⁾ M. Newcomb, J. M. Timko, D. M. Walba und D. J. Cram, J. Am. Chem. Soc. 99, 6392 (1977).
- ²⁵⁾ S. Kasuga und T. Tagudi, Chem. Pharm. Bull. 13, 233 (1965).
- ²⁶⁾ ^{26a)} G. W. Gokel, D. J. Cram, C. L. Liotta, H. P. Harris und F. L. Cook, J. Org. Chem. **39**, 2445 (1974). ^{26b} A. El Basyony, J. Klimes, A. Knöchel, J. Oehler und G. Rudolph, Z. Naturforsch., Teil B **31**, 1192 (1976).
- ²⁷⁾ Das [18]Krone-6-Addukt wird i. Vak. bei 20 Torr/Raumtemp. innerhalb von 14 h vollständig zerlegt. Der 2-Acetonitril-Komplex hält sich dagegen unter Normalbedingungen wochenlang ohne Zersetzung und kann sogar i. Vak. bei 40 °C zersetzungsfrei getrocknet werden. Es erwies sich im Gegenteil als schwierig, ein Lösungsmittel zu finden, das von 2 nicht festgehalten wird. Auch konnten wir bisher das Verwittern von Lösungsmitteladdukten von 2 nicht beobachten.
- ²⁸⁾ Vgl. I. Goldberg, Acta Crystallogr., Sect. B **31**, 754 (1975); R. Kaufmann, A. Knöchel, J. Kopf, J. Oehler und G. Rudolph, Chem. Ber. **110**, 2249 (1977).
- ²⁹⁾ Vgl. A. Knöchel, J. Kopf, J. Öehler und G. Rudolph, J. Chem. Soc., Chem. Commun. 1978, 595.
- ³⁰⁾ Vgl. I. H. Suh und W. Saenger, Angew. Chem. **90**, 565 (1978); Angew. Chem., Int. Ed. Engl. 17, 534 (1978).
- ³¹⁾ Siehe Firmenschrift "Polyglycole Hoechst", Hoechst AG, Frankfurt/M. 1976.
- 32) G. Oepen, K. Frensch und F. Vögtle, Liebigs Ann. Chem. 1979, 858.
- ³³⁾ F. Vögtle und E. Weber, Angew. Chem. 86, 126 (1974); Angew. Chem., Int. Ed. Engl. 13, 149 (1974).
- ³⁴⁾ Entsprechende [18]Krone-6-Neutralmolekülkomplexe werden i. Vak. zerlegt und sind teilweise nur im N₂-Strom haltbar^{26b)}.

[226/79]